Physics SL
Physics SL
5
Chapters
329
Notes
Theme A - Space, Time & Motion
Theme A - Space, Time & Motion
Mastering Motion: Scalars Vs. Vectors Explained
Scalar Vs. Vector: Dive Into Speed & Velocity Insights
Master Distance-Time Graphs: A Student’s Journey Explained!
Understanding Instantaneous & Average Speed: A Student's Journey Explained
Understanding Acceleration: Dive Into Physics & Spreadsheets
Mastering Distance-Time Graphs: Speed, Velocity & Acceleration Insights
Mastering Kinematic Equations: Dive Into Distance-Time & Speed-Time Graphs
Unveiling Kinematic Equations: Dive into Motion Analysis
Incredible Dog Catch Explained: Dive Into Physics!
Gravity's Grip: Understanding Earth’s Acceleration Variances
Understanding 2D Projectile Motion: Beyond Basics
Understanding Horizontal & Vertical Motion in Physics
The Unrealistic Nature of Neglecting Air Resistance
Understanding Air Resistance's Impact on Vertical Motion
Comparing Trajectories: Vacuum Vs. Air Resistance (Figure 24)
Unveiling The Mystery Of Forces: From Aristotle To Modern Physics
Unraveling Newton's Laws of Motion: The Ultimate Guide to Force and Acceleration
Unveil The Science Of Motion: Master Free-Body Force Diagrams Easily!
Unraveling The Mysteries of Translational Equilibrium
Unlocking The Secrets Of Hooke's Law And Elastic Forces
Master The Physics Of Springs: Series Vs Parallel!
Uncover The Secrets of Buoyancy Forces!
Unraveling the slippery secrets of friction
Uncover The Mysteries Of Friction Forces
Understanding Air Resistance: The Record-Breaking Skydive Of Alan Eustace
Stokes' Law: Dive Deep Into Fluid Dynamics & Viscosity
Understanding Force & Momentum: From Sports To Physics
Newton's Cradle: Visualizing Momentum Transfer and Collisions
Unraveling Newton's Third Law: Momentum Conservation Explored
Understanding Momentum Conservation: The Recoil Of Guns & Water Hoses
Helicopter Physics & Momentum: Understanding Motion & Force
Unlocking The Secrets Of Circular Motion In Theme-Park Rides
Centripetal Acceleration: Exploring Forces & Circular Motion
Centripetal Forces: Unraveling The Secrets Of Satellites & Rides
Banked Tracks Explained: Maximizing Racing Safety & Performance
Vertical Circle Motion: Unraveling The Physics Behind Thrilling Rides
Unveiling The Physics Of Energy Transfer: A Historical Dive
Understanding Energy: Transfers, Forms, and Applications
Unlocking Energy Conservation: Noether's Pioneering Principle
Coriolis' Insight: Understanding Work Done & Energy Transfer
Understanding Force-Distance Graphs: Unlock Energy Calculations
Unraveling Power: Renee vs. Philippe's Climb Explained
Key Factors Determining a Car's Maximum Speed
Unlocking Kinetic Energy: Equations & Real-Life Examples
Unlocking Gravitational Potential Energy: Earth's Conservative Force
Unveiling The Secrets of Mechanical Energy
Unlock The Secrets Of Elastic Potential Energy
Unlock The Secrets Of Energy Flow With Sankey Diagrams
Unlock The Power Of Energy Density!
Unveiling The Truth Behind Fossil Fuels Extraction
Unlock The Secrets Of Angular Acceleration!
Unlock Rotational Motion Secrets: Essential Guide & Examples
Unravel Rotational Mechanics: From Graphs To Equations!
Master The Concept Of Moment Of Inertia!
Unleash The Secrets Of Rotational Motion!
Unveiling The Secrets of Forces and Torque
Unveiling Newton’s Third Law of Rotational Motion
Unlock The Secrets of Angular Momentum in Sports & Universe!
Unlocking Angular Impulse: Rotational Dynamics Simplified
Unlock The Secrets Of Angular Momentum Change!
Master The Art Of Motion: Rolling Vs. Sliding
Unlocking the Mysteries of Rolling and Slipping: An Energy Perspective
Unraveling Einstein's Relativity: Maxwell's Revolutionary Theory
Unlock The Mysteries Of Spacetime!
Unlock The Secrets Of The Universe With IB Diploma Physics
Unlock The Mysteries Of The Universe With Galilean Relativity
Unlock The Mysteries Of Time Dilation And Special Relativity
Unlocking Einstein's Special Relativity With Lorentz Transformation
Understanding Relativistic Velocity Addition: Lorentz vs. Galilean
Invariant Spacetime Intervals: Einstein's Revelations
Muon Decay Mysteries: Unraveling Time Dilation & GPS Insights
Unraveling Spacetime: Minkowski's Visionary Diagrams and Worldlines
Unlocking Spacetime Secrets: The Invariant Hyperbola Explained
Unlocking Proper Length & Relativity: Deep Dive Into Lorentz Transformations
Theme B - The Particulate Nature Of Matter
Theme B - The Particulate Nature Of Matter
Theme C - Wave Behaviour
Theme C - Wave Behaviour
Theme D - Fields
Theme D - Fields
Theme E - Nuclear & Quantum Physics
Theme E - Nuclear & Quantum Physics
IB Resources
Theme A - Space, Time & Motion
Physics SL
Physics SL

Theme A - Space, Time & Motion

Unraveling Newton's Laws of Motion: The Ultimate Guide to Force and Acceleration

Word Count Emoji
659 words
Reading Time Emoji
4 mins read
Updated at Emoji
Last edited on 5th Nov 2024

Table of content

Newton's laws of motion 🍎

Did you know that moving objects are kinda like teenagers? They can be stubborn! Objects at rest want to stay at rest, and objects in motion want to stay in motion. This idea was started by Galileo, who thought about how a ball rolling down a ramp would keep rolling if the ramp were flat at the end. This became Newton's First Law of Motion or the law of inertia: "An object remains stationary or moves at a constant velocity unless an external force acts on it."

 

🚴‍♂️ Real-world example: When you're riding a bike and stop pedaling, you continue to coast along until friction (an external force) slows you down.

 

Now, let's take a leap back in time to the ancient Greek philosopher, Aristotle. He believed that a constant force was needed to keep an object moving. But over centuries, this theory was questioned, including by scholars during the Islamic Golden Age. By the time of Newton, this idea was debunked. Turns out, an object's velocity (both speed and direction) stays the same unless something from outside applies a force to change it.

 

🏐 Real-world example: When you toss a ball, it keeps going in the same direction until gravity pulls it down.

 

Then Newton gave us his Second Law of Motion - "Force equals mass times acceleration." In other words, if you push or pull something, it's going to speed up, slow down, or change direction based on its mass and how much force you apply.

 

🚗 Real-world example: Imagine driving a car. The heavier the car (mass), the more gas (force) you need to speed up (acceleration).

 

There are two key points here

  • Mass is a scalar quantity (only magnitude, no direction), so the direction of the force and acceleration will be the same.
  • Mass is also the force required per unit of acceleration for an object. This helps standardize force units - 1 Newton (N) of force is what's needed to accelerate a 1kg object at 1 meter per second squared (ms-2).

Lastly, there's Newton's Third Law of Motion - "Every action has an equal and opposite reaction." Essentially, forces always come in pairs. Push on a wall, and it's pushing back with equal force.

 

🚀 Real-world example: Rocket propulsion. When rocket fuel burns and gas is expelled downward (action), the rocket is pushed upward (reaction).

The importance of experiments 🧪

To test and understand these laws, we need to perform experiments, but they have to be valid. That means the experiment measures what it's supposed to. A good experiment to understand Newton’s second law involves using elastic threads to pull a cart and observing its acceleration.

 

But be careful! Uncontrolled variables can lead to invalid results. Consider a student who wanted to test Newton's second law by using different weights to pull a trolley. The mass of the entire system changes with each added weight, which was overlooked. A more valid experiment would involve adjusting both the weight on the trolley and the weight being used to pull it.

Unlock the Full Content! File Is Locked Emoji

Dive deeper and gain exclusive access to premium files of Physics SL. Subscribe now and get closer to that 45 🌟

Nail IB's App Icon
IB Resources
Theme A - Space, Time & Motion
Physics SL
Physics SL

Theme A - Space, Time & Motion

Unraveling Newton's Laws of Motion: The Ultimate Guide to Force and Acceleration

Word Count Emoji
659 words
Reading Time Emoji
4 mins read
Updated at Emoji
Last edited on 5th Nov 2024

Table of content

Newton's laws of motion 🍎

Did you know that moving objects are kinda like teenagers? They can be stubborn! Objects at rest want to stay at rest, and objects in motion want to stay in motion. This idea was started by Galileo, who thought about how a ball rolling down a ramp would keep rolling if the ramp were flat at the end. This became Newton's First Law of Motion or the law of inertia: "An object remains stationary or moves at a constant velocity unless an external force acts on it."

 

🚴‍♂️ Real-world example: When you're riding a bike and stop pedaling, you continue to coast along until friction (an external force) slows you down.

 

Now, let's take a leap back in time to the ancient Greek philosopher, Aristotle. He believed that a constant force was needed to keep an object moving. But over centuries, this theory was questioned, including by scholars during the Islamic Golden Age. By the time of Newton, this idea was debunked. Turns out, an object's velocity (both speed and direction) stays the same unless something from outside applies a force to change it.

 

🏐 Real-world example: When you toss a ball, it keeps going in the same direction until gravity pulls it down.

 

Then Newton gave us his Second Law of Motion - "Force equals mass times acceleration." In other words, if you push or pull something, it's going to speed up, slow down, or change direction based on its mass and how much force you apply.

 

🚗 Real-world example: Imagine driving a car. The heavier the car (mass), the more gas (force) you need to speed up (acceleration).

 

There are two key points here

  • Mass is a scalar quantity (only magnitude, no direction), so the direction of the force and acceleration will be the same.
  • Mass is also the force required per unit of acceleration for an object. This helps standardize force units - 1 Newton (N) of force is what's needed to accelerate a 1kg object at 1 meter per second squared (ms-2).

Lastly, there's Newton's Third Law of Motion - "Every action has an equal and opposite reaction." Essentially, forces always come in pairs. Push on a wall, and it's pushing back with equal force.

 

🚀 Real-world example: Rocket propulsion. When rocket fuel burns and gas is expelled downward (action), the rocket is pushed upward (reaction).

The importance of experiments 🧪

To test and understand these laws, we need to perform experiments, but they have to be valid. That means the experiment measures what it's supposed to. A good experiment to understand Newton’s second law involves using elastic threads to pull a cart and observing its acceleration.

 

But be careful! Uncontrolled variables can lead to invalid results. Consider a student who wanted to test Newton's second law by using different weights to pull a trolley. The mass of the entire system changes with each added weight, which was overlooked. A more valid experiment would involve adjusting both the weight on the trolley and the weight being used to pull it.

Unlock the Full Content! File Is Locked Emoji

Dive deeper and gain exclusive access to premium files of Physics SL. Subscribe now and get closer to that 45 🌟

AI Assist

Expand

AI Avatar
Hello there,
how can I help you today?