In my Biology IB Class, I was introduced to enzymes and how they work in different conditions in different conditions, as well as, what inhibits them to function. Regularly, it interests me how what we consume daily impacts our health. But also, how changing our specific diets can improve or deteriorate different aspects of our health. Being an athlete, it's important to consistently maintain a balanced diet, not only to maximise performance levels, but also, promote muscle repair and prevent injuries from occurring. Consequently, I started inquiring about the possible health benefits if we decided to increase our intake of flavonoids and if they have a significant impact upon increasing energy generation and blood glucose concentrations to improve performance output. Hence, I chose to use different types of berries; to explore the effects it has on the breakdown of hydrogen peroxide. Even though there are many health benefits attributed to berries, I wanted to investigate if it has any specific drawbacks as being an inhibitor of the enzyme Catalase.
Enzymes are globular proteins with a specific function that acts as a catalyst in living organisms, thus, they speed up the chemical reactions inside and outside the cell without being altered by the process itself. On the surface level, an enzyme has a region known as the active site, which is where substrate molecules bind and a chemical reaction is catalysed. However, each active site is adapted to one specific substrate, meaning one reaction can occur, this is known as the Lock and key model. As seen in Figure 1, the substrate entering the active site of the enzyme must alter itself slightly as the substrate binds into perfect contact. As a result, an enzyme-substrate complex is formed, and the products are released.
Consequently, the presence of inhibitors can occur; a molecule that disrupts the normal pathway between an enzyme and a substrate (Brent Cornell, 2016). In this experiment, flavonoids are considered to be a competitive inhibitor; they bind to the same active site. As seen in Figure 2, though the shape of the substrates are structurally and chemically similar, the inhibitor blocks the active site and prevents the development of an enzyme substrate complex, thus, no reaction occurs. There are various different types of enzymes in living organisms, but his experiment specifically focuses on the enzyme catalase found in the Celery. The presence of catalase, an antioxidant enzyme found in all living organisms, is integral for the decomposition of 2 hydrogen peroxide to 2 water molecules (H2O) and 1 oxygen molecule (O2). Most importantly, it protects the cells from oxidative damage carried out by reactive oxygen species and maintains an optimum level of the molecule in the cell for cellular signal processes. Inevitably, if there is an exorbitant volume of Catalase, a disease called acatalasemia, a genetic disease formed when catalase level is too low, is activated and the catalase deficiency becomes a potential threat to the cell and the living organisms. Accordingly, the methodology developed attempts to quantify the different effects between fruit species that contain flavonoids, used by 5 different types of berries: Blueberry containing 1100mg/100g dry weight, Raspberries and strawberries containing 500 mg/100g dry weight (Jiyun Lun), Cranberries containing 7.9mg/100g dry weight and blackberries containing 38.8mg/100g dry weight (Croge et al.). They were extracted and converted to liquid form to investigate how each of these inhibitors will affect the volume of oxygen being released. Celery Juice was used to display the breakdown of hydrogen peroxide as it is rich in catalase to sustain health and inhibit the enzymes of transcription factors important in inflammation. This experiment seeks to reciprocate the natural procedure of catalase reactions in the liver through controlled means, creating the optimum medium in which it naturally occurs. As a result, the breakdown of hydrogen peroxide as displayed by the celery juice that is rich in catalase to sustain health, Each of the berry juice was mixed with the celery juice to see to what extent it has inhibited the function of Catalase. If a prominent volume of O2 is released, it indicates the berry used did not interfere significantly with the chemical action, conversely, if a minimal volume of O2 is released, it indicates the berry used worked effectively on slowing down the chemical reaction.
The Alternative Hypothesis (Ha) predicts that as the concentration of flavonoids increases in different species of berries, the inhibitor will become more prominent, decreasing the volume ((cm3) of oxygen (O2) being produced. The prediction is that blueberries will have the greatest effect on preventing the breakdown of hydrogen peroxide because they are anticipated to produce the lowest volume (cm3) of oxygen ( O2) as it has the highest concentration of flavonoids. As a result, they act similarly to mutagens, specifically these pre-oxidants act as inhibitors that prevent release of O2 molecules. of enzymes. Consequently, Blackberries, strawberries and raspberries should produce somewhat the same volume of oxygen as they contain similar concentrations of flavonoids. Whilst, cranberries will produce the highest volume of oxygen (cm3) as it has the lowest concentration of flavonoids. Nonetheless, a Null hypothesis (H0)can occur, whereas there is no difference in the rate of reaction when different concentrations of flavonoids are added. The topic of interest in this investigation is the impact on different species of flavonoids (Strawberry, Blueberry, Raspberry, Blackberry, Cranberry) have on the effect on the breakdown of hydrogen peroxide in Celery juice to supply the enzyme - Catalase. In numerous previous scientific studies (Skibola and Smith), flavonoids was seen as an competitive inhibitor to several enzymatic reactions, decreasing the breakdown of hydrogen peroxide.
Independent Variable -
The Different types of berries used ( Strawberries - Fragaria anassa, Blueberries - Vaccinium sect, Raspberry - Rubus Idaeus, Blackberries - Rubus, Cranberries - Vaccinium subg. Oxygccous). 5cc of each berry were added each trial throughout the experiment.
Dependent Variable -
The Volume of Oxygen (cm3) measured by the Gas Syringe (2 minutes)
A preliminary experiment was done to identify if there needs to be alterations to the method. It was important to determine whether tea or berries ( liquid form ) would work better as an inhibitor for the enzyme Catalase. A control variable of Celery juice ( Hydrogen peroxide ) was used to understand the effect the independent variable had on the dependent variable, as well as, to ensure the experiment results were unskewed.
The methodology developed attempts to quantify the effect of flavonoids on the breakdown of hydrogen peroxide using a Gas syringe to measure the volume of oxygen (O2) released. Hydrogen peroxide, consisting of water and extra oxygen atoms tacked on, is broken down by the enzyme catalase to water and oxygen. This test is composed of a mixture of flavonoids (berries juice), hydrogen peroxide and catalase (celery juice). As all components are mixed together, the hydrogen peroxide reacts with the catalase, but is inhibited with the mixture of flavonoids. Therefore, it's expected that with a larger concentration of flavonoids added in the 2 minute intervals, the lesser volume of oxygen (O2) wll be released.
Safety - Hydrogen peroxide can cause severe eye irritation, burns, and respiratory system when in contact with the skin, Therefore, goggles and lab coats must be worn when handling the acid to prevent any injuries. Additionally, the use of glass beakers and conical flasks must be handled with precaution to prevent any cuts to the conduct/peer. If an accident occurs, immediately rinse the contaminated skin and inform a teacher or supervisor.
Ethical - There were no ethical implications to be considered throughout the investigation as non living organisms were used in the procedure.
Environmental - The hydrogen peroxide used in this experiment was safely poured into waste bins to prevent pollution in the water supply. Furthermore, all berries used were disposed properly through composting, a conventional trash bin or rescuing the leftovers parts if possible. Only the minimum amount of each berries were used to avoid food wastage.
*All data are rounded to 2 significant figures
*cm3 = Volume of gas syringe
Qualitative Data - Throughout the experiment, there were many observations made on the amount of oxygen released by the reaction after being inhibited by berries (flavonoids).
In all trials, there was never any distinctive smell that was released from the solution besides the smell of the berries. The foam foamed in all trials was created because celery contains an enzyme called catalase, as it comes into contact with hydrogen peroxide (H202), this reaction happens so quickly, the bubbles formed are pure oxygen bubbles created by catalase. In general, there was an inverse relationship because as the concentration of flavonoids increased, the amount of foam decreased.
Decision for uncertainties - The uncertainty for the volume of oxygen released +/- 0.5cc, was used as the gas syringe used in the experiment changed by 1, not more or less, meaning, the volume oxygen released changed by 1, therefore it was unable to measure the volume of 17.6cc of 22.3 as an example. Therefore, this unit was kept constant throughout the mean and standard deviation,
*all data rounded to 0 decimal places
AI Assist
Expand